handporn.net
تأثيرات الكادميوم في السمّية الحادة لمبيدات حشرية مثبطة لنشاط إنزيم الكولين إستيريز في الفئران | QScience.com
1887
Volume 3 (2022) Number 2
  • EISSN: 2708-0463

Abstract

تهدف هذه الدراسة إلى إجراء فحص السمّية الحادة في ذكور الفئران لكل من الكادميوم ونماذج من المبيدات الحشرية الفسفورية العضوية والكارباميتية المثبطة لإنزيم الكولين إستيريز، وتداخلها مع الكادميوم في مستويات الجُرع المميتة الوسطية خلال 24 ساعة (الجم-50 LD50)، وتحليل الآيزوبولوغرام (Isobologram Analysis)، ومؤشر التداخل السمّي (Toxicity Index). بلغت الجم-50 للكادميوم في الفئران 8.6 ملغم/كغم (mg/kg) من وزن الجسم بالحقن في الخلب، وأظهرت الفئران المعاملة بالكادميوم علامات التمطّي مع صعوبة الحركة والمشي. وبلغت الجم-50 لكل من المبيدات الحشرية الفسفورية العضوية دايكلورفوس وديازينون وكوموفوس وكلوربايريفوس عن طريق التجريع الفموي "التزقيم" (Gavage) 81.6 و157.6 و192.4 و437.1 ملغم/كغم من وزن الجسم، على التوالي، في حين بلغت الجم-50 لمبيدَي الكارباميت كارباريل وميثوميل عن طريق الفم 940.2 و177.5 ملغم/كغم من وزن الجسم، على التوالي. وأظهرت الفئران المتسممة بهذه المبيدات علامات الإلعاب والتدمع وانتصاب الشعر والذيل والتمدد على أرضية القفص والتحزم العضلي (Muscle Fasciculation) والرجفة والاختلاج العصبي وصعوبة التنفس، ومن ثم الموت خلال 24 ساعة من التجريع. وعند حقن الكادميوم في الخلب قبل المبيدات الحشرية بنصف ساعة، انخفضت قيم الجم-50 (زيادة السمّية) لكل من الكادميوم (51.4 - 74%) والمبيدات الحشرية (48.3 - 86.8%) مقارنة بقيمها بعد إعطائها لوحدها في الفئران. وقد بيّن تحليل الآيزوبولوغرام للتداخل السمّي بين الكادميوم والمبيدات الحشرية أن نوع التداخل كان تآزريًا (Synergistic)، ودلّ مؤشر التداخل بين الكادميوم والمبيدات الحشرية جميعها على أن التداخل كان تآزريًا أيضًا لكون قيمه أقل من واحد. وتشير هذه النتائج إلى احتمالية حصول تداخل سمّي بين الكادميوم مع المبيدات الحشرية الفسفورية العضوية والكارباميتية، إذْ سبّب إعطاء هذه المركبات في الفئران بجرع سامة وحادة تداخلًا سمّيًا حادًا من النوع التآزري الذي تم الكشف عنه وفق تجارب الجرع المميتة الوسطية وتحليل الآيزوبولوغرام ومؤشر التداخل السمّي.

The purpose of this study was to examine in male mice the acute toxicity of cadmium and representative organophosphate and carbamate cholinesterase inhibiting insecticides and their interaction at the levels of the 24 h median lethal dose (LD50), isobologram analysis and toxicity index. The LD50 value of cadmium was 8.6 mg/kg of body weight, intraperitoneally. Cadmium-treated mice showed writhing responses with difficulty in movement and walking. The oral LD50 values the organophosphate insecticides dichlorvos, diazinon, cuomaphos, chlorpyrifos were 81.6, 157.6, 192.4 and 437.1 mg/kg of body weight, respectively; whereas those of the carbamate insecticides carbaryl and methomyl were 940.2 and 177.5 mg/kg of body weight, respectively. Mice intoxicated with insecticides showed signs of salivation, lacrimation, piloerection, straub tail, flat body appearance, muscle fasciculation, tremor, convulsion, dyspnea followed by death within 24 of oral dosing. When cadmium was injected 30 min before the insecticide dosing, the LD50 values of cadmium and those of the insecticides decreased (increased toxicity) by 51.4 to 74% and 48.3 to 86.8%, respectively, in comparison to their individual LD50 values in mice. Isobologram analysis revealed that the toxic interaction between cadmium and the insecticides was synergistic. The toxicity index also indicated that the interaction between cadmium and the insecticides was synergistic because its values were < 1. These results suggest that administering cadmium with organophosphate and carbamate insecticides at acute toxic doses in mice causes acute synergistic toxic interaction as identified by the LD50 experiments, isobologram analysis and toxicity index.

Loading

Article metrics loading...

/content/journals/10.5339/ajsr.2022.9
2022-10-31
2024-11-14
Loading full text...

Full text loading...

/deliver/fulltext/ajsr/2022/2/ajsr.2022.9.html?itemId=/content/journals/10.5339/ajsr.2022.9&mimeType=html&fmt=ahah

References

  1. Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The effects of cadmium toxicity. International Journal of Environmental Research and Public Health. 2020; 17(11):3782. https://doi.org/10.3390/ijerph17113782. PMID: 32466586; PMCID: PMC7312803.
    [Google Scholar]
  2. Amer AAE, El-Makarem HSA, El-Maghraby MA, Abou-Alella SA. Lead, cadmium, and aluminum in raw bovine milk: Residue level, estimated intake, and fate during artisanal dairy manufacture. Journal of Advanced Veterinary and Animal Research. 2021; 8(3):454–464. https://doi.org/10.5455/javar.2021.h534. PMID: 34722744; PMCID: PMC8520162.
    [Google Scholar]
  3. Liu YH, Wang CW, Wu DW, Lee WH, Chen YC, Li CH, et al. Association of heavy metals with overall mortality in a Taiwanese population. Nutrients. 2021; 13(6):2070. https://doi.org/10.3390/nu13062070. PMID: 34204322; PMCID: PMC8235372.
    [Google Scholar]
  4. Vijayakumar V, Abern MR, Jagai JS, Kajdacsy-Balla A. Observational study of the association between air cadmium exposure and prostate cancer aggressiveness at diagnosis among a nationwide retrospective cohort of 230,540 patients in the United States. International Journal of Environmental Research and Public Health. 2021; 18(16):8333. https://doi.org/10.3390/ijerph18168333. PMID: 34444081; PMCID: PMC8392592.
    [Google Scholar]
  5. Satarug S. Dietary cadmium intake and its effects on kidneys. Toxics. 2018; 6(1):15. https://doi.org/10.3390/toxics6010015. PMID: 29534455; PMCID: PMC5874788.
    [Google Scholar]
  6. IPCS. Cadmium [Internet]. Geneva: World Health Organization, International Programme on Chemical Safety (Environmental Health Criteria 134); 1992. Available from: http://www.inchem.org/documents/ehc/ehc/ehc134.htm
  7. Faroon O, Ashizawa A, Wright S, Tucker P, Jenkins K, Ingerman L, et al. Toxicological profile for cadmium. Atlanta, GA: Agency for Toxic Substances and Disease Registry (US); 2012. PMID: 24049863.
    [Google Scholar]
  8. Rani A, Kumar A, Lal A, Pant M. Cellular mechanisms of cadmium-induced toxicity: A review. International Journal of Environmental Health Research. 2014; 24(4):378–399. https://doi.org/10.1080/09603123.2013.835032. PMID: 24117228
    [Google Scholar]
  9. Carmona A, Roudeau S, Ortega R. Molecular mechanisms of environmental metal neurotoxicity: A focus on the interactions of metals with synapse structure and function. Toxics. 2021; 9(9):198. https://doi.org/10.3390/toxics9090198. PMID: 34564349; PMCID: PMC8471991.
    [Google Scholar]
  10. Yan LJ, Allen DC. Cadmium-induced kidney injury: Oxidative damage as a unifying mechanism. Biomolecules. 2021; 11(11):1575. https://doi.org/10.3390/biom11111575. PMID: 34827573; PMCID: PMC8615899.
    [Google Scholar]
  11. Carageorgiou H, Tzotzes V, Sideris A, Zarros A, Tsakiris S. Cadmium effects on brain acetylcholinesterase activity and antioxidant status of adult rats: Modulation by zinc, calcium and L-cysteine co-administration. Basic & Clinical Pharmacology & Toxicology. 2005; 97(5):320–324. https://doi.org/10.1111/j.1742-7843.2005.pto_174.x. PMID: 16236145.
    [Google Scholar]
  12. Ibiwoye MO, Snyder EA, Lyons J, Vasauskas AA, Hernandez MJ, Summerlin AR, et al. The effect of short-term exposure to cadmium on the expression of vascular endothelial barrier antigen in the developing rat forebrain and cerebellum: A computerized quantitative immunofluorescent study. Cureus. 2022; 14(4):e23848. https://doi.org/10.7759/cureus.23848. PMID: 35402117; PMCID: PMC8986507.
    [Google Scholar]
  13. Méndez-Armenta M, Ríos C. Cadmium neurotoxicity. Environmental Toxicology and Pharmacology. 2007; 23(3):350–358. https://doi.org/10.1016/j.etap.2006.11.009. PMID: 21783780.
    [Google Scholar]
  14. Rahimzadeh MR, Rahimzadeh MR, Kazemi S, Moghadamnia AA. Cadmium toxicity and treatment: An update. Caspian Journal of Internal Medicine. 2017; 8(3):135–145. https://doi.org/10.22088/cjim.8.3.135. PMID: 28932363; PMCID: PMC5596182.
    [Google Scholar]
  15. Osman IM, Mohammad FK. Pharmacological and toxicological challenges reveal the depressant action of cadmium in rats. Iraqi Journal of Pharmacy. 2001;1:80–88.
    [Google Scholar]
  16. Wilson BW. Cholinesterase inhibition. In: Wexler P, editor. Encyclopedia of toxicology. 3rd ed. Amsterdam: Elsevier; 2014. pp. 942–951.
  17. US EPA. Insecticides. Sources, stressors and responses. Causal Analysis/Diagnosis Decision Information System [CADDIS] – Vol. 2 [Internet]. Washington, DC: Office of Research and Development, EPA; 2017. Available from: https://www.epa.gov/caddis-vol2/insecticides
  18. Choudri BS, Charabi Y. Pesticides and herbicides. Water Environment Research. 2019; 91(10):1342–1349. https://doi.org/10.1002/wer.1227.
    [Google Scholar]
  19. Baynes RE. Ectoparasiticides. In: Riviere JE, Papich MG, editors. Veterinary pharmacology and therapeutics. 10th ed. Hoboken, NJ: Wiley Blackwell; 2018. pp. 1166–1187.
    [Google Scholar]
  20. Vale A, Lotti M. Organophosphorus and carbamate insecticide poisoning. Handbook of Clinical Neurology. 2015;131:149–168. https://doi.org/10.1016/B978-0-444-62627-1.00010-X
    [Google Scholar]
  21. Naughton SX, Terry AV Jr. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology. 2018;408:101–112. https://doi.org/10.1016/j.tox.2018.08.011. PMID: 30144465; PMCID: PMC6839762.
    [Google Scholar]
  22. Chen L, Qu G, Sun X, Zhang S, Wang L, Sang N, et al. Characterization of the interaction between cadmium and chlorpyrifos with integrative techniques in incurring synergistic hepatoxicity. PLoS One. 2013; 8(3):e59553. https://doi.org/10.1371/journal.pone.0059553. PMID: 23516638; PMCID: PMC3597607.
    [Google Scholar]
  23. Singh N, Gupta VK, Kumar A, Sharma B. Synergistic effects of heavy metals and pesticides in living systems. Frontiers in Chemistry. 2017;5:70. https://doi.org/10.3389/fchem.2017.00070. PMID: 29075624; PMCID: PMC5641569.
    [Google Scholar]
  24. Guilhermino L, Soares AMVM, Carvalho AP, Lopes MC. Effects of cadmium and parathion exposure on hematology and blood biochemistry of adult male rats. Bulletin of Environmental Contamination and Toxicology. 1998; 60(1):52–59. https://doi.org/10.1007/s001289900590. PMID: 9484556.
    [Google Scholar]
  25. Ecobichon DJ. Pesticide use in developing countries. Toxicology. 2001; 160(1–3):27–33. https://doi.org/10.1016/s0300-483x(00)00452-2. PMID: 11246121.
    [Google Scholar]
  26. Dixon WJ. Efficient analysis of experimental observations. Annual Review of Pharmacology and Toxicology. 1980;20:441–462. https://doi.org/10.1146/annurev.pa.20.040180.002301
    [Google Scholar]
  27. Huang RY, Pei L, Liu Q, Chen S, Dou H, Shu G, et al. Isobologram analysis: A comprehensive review of methodology and current research. Frontiers in Pharmacology. 2019;10:1222. https://doi.org/10.3389/fphar.2019.01222. PMID: 31736746; PMCID: PMC6830115.
    [Google Scholar]
  28. Mohammad FK, Al-Zubaidy MH, Alias AS. Sedative and hypnotic effects of combined administration of metoclopramide and ketamine in chickens. Lab Animal. 2007; 36(4):35–39. https://doi.org/10.1038/laban0407-35. PMID: 17380147
    [Google Scholar]
  29. Puig MM, Warner W, Pol O. Intestinal inflammation and morphine tolerance alter the interaction between morphine and clonidine on gastrointestinal transit in mice. Anesthesiology. 2000; 93(1):219–230. https://doi.org/10.1097/00000542-200007000-00033. PMID: 10861166
    [Google Scholar]
  30. Tallarida RJ. Statistical analysis of drug combinations for synergism. Pain. 1992; 49(1):93–97. https://doi.org/10.1016/0304-3959(92)90193-F. Erratum in: Pain 1993;53(3):365. PMID: 1594286.
    [Google Scholar]
  31. Philippe C, Grégoir AF, Thoré ESJ, Brendonck L, De Boeck G, Pinceel T. Acute sensitivity of the killifish Nothobranchius furzeri to a combination of temperature and reference toxicants (cadmium, chlorpyrifos and 3,4-dichloroaniline). Environmental Science and Pollution Research. 2018; 25(10):10029–10038. https://doi.org/10.1007/s11356-018-1278-x. PMID: 29380199.
    [Google Scholar]
  32. Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics. 2021; 9(3):42. https://doi.org/10.3390/toxics9030042. PMID: 33668829; PMCID: PMC7996329.
    [Google Scholar]
  33. Nemmiche S. Oxidative signaling response to cadmium exposure. Toxicological Sciences. 2017; 156(1):4–10. https://doi.org/10.1093/toxsci/kfw222. PMID: 27803385.
    [Google Scholar]
  34. Bertin G, Averbeck D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie. 2006 Nov; 88(11):1549–1559. https://doi.org/10.1016/j.biochi.2006.10.001. PMID: 17070979.
    [Google Scholar]
  35. Christensen CW, Fujimoto JM. Tolerance to cadmium in the abdominal stretch response: A comparative study of cadmium and acetic acid. Journal of Toxicology and Environmental Health. 1983; 11(4–6):739–748. https://doi.org/10.1080/15287398309530381. PMID: 6225878.
    [Google Scholar]
  36. Osman IM, Mohammad FK. Neurobehavioral effects of intraperitoneal cadmium administration in rats. In: VIII International Symposium on Ecology and Environmental Problems. Canakkale, Turkey; 2017 October 4–7 (abstract book: 250).
    [Google Scholar]
  37. Mohammad FK, Al-Baggou BK, Tawfeek FK. Interaction of cadmium with xylazine in mice: Locomotor activity and plasma glucose concentration. Iraqi Journal of Veterinary Sciences. 2000; 13(1):23–33.
    [Google Scholar]
  38. Uehara H, Aoki Y, Shimojo N, Suzuki KT. Depression of serum cholinesterase activity by cadmium. Toxicology. 1985; 36(2–3):131–138. https://doi.org/10.1016/0300-483x(85)90047-2. PMID: 4049426.
    [Google Scholar]
  39. Oboh G, Adebayo AA, Ademosun AO, Olowokere OG. Rutin restores neurobehavioral deficits via alterations in cadmium bioavailability in the brain of rats exposed to cadmium. Neurotoxicology. 2020;77:12–19. https://doi.org/10.1016/j.neuro.2019.12.008. PMID: 31836556.
    [Google Scholar]
  40. Del Pino J, Zeballos G, Anadon MJ, Capo MA, Díaz MJ, García J, et al. Higher sensitivity to cadmium induced cell death of basal forebrain cholinergic neurons: A cholinesterase dependent mechanism. Toxicology. 2014;325:151–159. https://doi.org/10.1016/j.tox.2014.09.004. PMID: 25201352.
    [Google Scholar]
  41. World Health Organization. The WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 edition [Online]. Geneva: World Health Organization; 2020. Available from: https://www.who.int/publications/i/item/9789240005662
    [Google Scholar]
/content/journals/10.5339/ajsr.2022.9
Loading
/content/journals/10.5339/ajsr.2022.9
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error